|本期目录/Table of Contents|

[1]汪嘉鸿△,封旭华,华英汇.机械性踝关节不稳定患者中 腓骨肌功能的表面肌电研究[J].生物医学工程研究,2011,04:229-231.
 WANG Jiahong,FENG Xuhua,HUA Yinghui.Surface Electromyographic Study of the PeronealTendons in Patients with Mechanical Ankle Instability[J].Journal of Biomedical Engineering Research,2011,04:229-231.
点击复制

机械性踝关节不稳定患者中 腓骨肌功能的表面肌电研究(PDF)

《生物医学工程研究》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2011年04期
页码:
229-231
栏目:
论著
出版日期:
2011-12-30

文章信息/Info

Title:
Surface Electromyographic Study of the Peroneal Tendons in Patients with Mechanical Ankle Instability
作者:
汪嘉鸿1封旭华2华英汇3
1.华东师范大学体育与健康学院,上海 200063;2.上海市体育科学研究所,上海 200030; 3.复旦大学附属华山医院运动医学科,上海 200040
Author(s):
WANG Jiahong1 FENG Xuhua2 HUA Yinghui3
1.College of Physical Education and Health, East China Normal University, Shanghai 200063, China;2.Physical Education and Sports Science Institute of Shanghai,Shanghai 200030; 3.Department of Sports Medicine, Huashan Hospital, Fudan University,Shanghai
关键词:
机械性踝关节 不稳定 腓骨肌 表面肌电 标化平均波幅 激发时间
Keywords:
Mechanical ankle instabilityPperoneal tendonsSurface electromyographicStandardized average amplitudesOn set time
分类号:
R318
DOI:
-
文献标识码:
A
摘要:
评价机械性踝关节不稳定中腓骨肌的功能变化。20名单侧机械性踝关节不稳 定患者的双侧踝关节在行走过程中模拟内翻动作时接受表面肌电测试,以患侧踝关节作为不稳定组,以同一患者的对侧无症状踝关节作为 正常对照组。计算并比较两组踝关节腓骨长肌和腓骨短肌的标化平均波幅和激发时间的差异。在模拟内翻动作中,不稳定组的腓骨长肌和 腓骨短肌的标化平均波幅减小(1.8±0.9; 1.9±0.7),腓骨长肌和腓骨短肌的激发时间延迟(73.45±13.92 ms;71.57±11.24 ms), 与正常对照组(3.5±2.1;3.8±1.5;59.12±9.15 ms;63.79±10.21 ms)相比,差别均有显著性意义。机械性踝关节不稳定中存在模 拟内翻动作时腓骨肌的标化平均波幅下降,激发延迟,这可能导致踝关节习惯性不稳定,并使踝关节更容易扭伤。
Abstract:
To evaluate the function of peroneal tendons in patients with mechanical ankle instability (MAI). A controlled laboratory study was done in twenty patients with unilateral MAI (Group Instability, twenty ankles with MAI; and group control, the contralateral twenty asymptomatic ankles). All ankles experienced the test as patients underwent a sudden ankle inversion perturbation during walking. Surface electromyography (sEMG) of the bilateral peroneal longus and peroneal brevis were recorded during the test. The standardized average EMG amplitudes and on set time in two groups were calculated and compared. During the sudden ankle inversion perturbation, the instability group had lower standardized average EMG amplitudes of peroneal longus (1.8±0.9) and peroneal brevis (1.9±0.7), longer on set time of peroneal longus (73.45± 13.92ms) and peroneal brevis (71.57± 11.24ms) than those of control group (3.5±2.1;3.8±1.5 ;59.12± 9.15ms;63.79± 10.21ms). Significant differences were seen in all the differences. Lower standardized average EMG amplitudes and delayed on set time are seen in ankles with mechanical instability, which may contribute to recurrent joint instability and may leave the ankle vulnerable to injurious loads.

参考文献/References

[1]MacAuley, D. Ankle injuries: same joint, different sports[J]. Med Sci Sports Exerc. 1999, 31(7 suppl): 409-411.
[2]Krips R, de Vries J, van Dijk CN. Ankle instability[J]. Foot Ankle Clin,2006, 11(2):311-329.
[3]Delahunt E. Neuromuscular contributions to functional instability of the ankle joint[J]. Journal of Bodywork and Movement Therapies,2007, 11(3): 201-213.
[4]Gutierrez GM, Kaminski TW, Douex AT. Neuromuscular control and ankle instability[J]. PM R,2009, 1(4):359-265.
[5]Mitchell A, Dyson R, Hale T, et al. Biomechanics of ankle instability. Part 1: reaction time to simulated ankle sprain[J]. Med Sci Sports Exerc,2008, 40(8):1515-1521.
[6]Palmieri-Smith RM, Hopkins JT, Brown TN. Peroneal activation deficits in persons with functional ankle instability [J]. Am J Sports Med,2009, 37(5): 982-988.
[7]Mitchell A, Dyson R, Hale T, et al. Biomechanics of ankle instability. Part 2: postural sway-reaction time relationship[J]. Medicine and science in sports and exercise, 2008, 40 (8): P.1522-1528.
[8]Zinder SM, Granata KP, Shultz SJ, et al. Ankle bracing and the neuromuscular factors influencing joint stiffness[J]. J Athl Train,2009, 44(4):363-369.
[9]Brown CN, Padua DA, Marshall SW, et al. Variability of motion in individuals with mechanical or functional ankle instability during a stop jump maneuver[J]. Clin Biomech,2009, 24(9):762-768.
[10]华英汇,郑洁皎,陈世益,等. 机械性踝关节不稳定中踝屈/伸肌群的等速肌力评价[J]. 中国运动医学杂志. 2011,30(9):810-814.
[11]Delahunt E. Neuromuscular contributions to functional instability of the ankle joint[J]. Journal of Bodywork and Movement Therapies,2007, 11(3): 201-213.
[12]Fox J, Docherty CL, Schrader J, et al. Eccentric plantar-flexor torque deficits in participants with functional ankle instability[J]. J Athl Train,2008, 43(1): 51-54.
[13]Munn, J, Beard, D J, Refshauge, K M,et al. Eccentric muscle strength in functional ankle instability[J]. Medicine and science in sports and exercise,2003, 35 (2): 245-250.
[14]Clarys JP. Electromyography in sports and occupational settings: an update of its limits and possibilities[J]. Ergonomics,2000, 43(10):1750-1762.
[15]Santilli V, Frascarelli MA, Paoloni M, et al. Peroneus longus muscle activation pattern during gait cycle in athletes affected by functional ankle instability: a surface electromyographic study[J]. Am J Sports Med,2005, 33(8):1183-1187.
[16]Palmieri-Smith RM, Hopkins JT, Brown TN. Peroneal activation deficits in persons with functional ankle instability[J]. Am J Sports Med,2009, 37(5):982-988.
[17]Mitchell A, Dyson R, Hale T, et al. Biomechanics of ankle instability. Part 1: reaction time to simulated ankle sprain[J]. Med Sci Sports Exerc,2008, 40(8):1515-1521.
[18]Suda EY, Amorim CF, Sacco Ide C. Influence of ankle functional instability on the ankle electromyography during landing after volleyball blocking[J]. Electromyogr Kinesiol,2009, 19(2):e84-93.

备注/Memo

备注/Memo:
收稿日期:2012-10-20 △通信作者Email:846415001@qq.com
更新日期/Last Update: 2011-12-30